
2 Vectors

(AST230) R for Data Science
Md Rasel Biswas

1 / 19

Creating vectors in R

Up until now we’ve been creating simple objects by directly assigning a single
value to an object.

It’s very likely that you’ll soon want to progress to creating more complicated
objects. Happily, R has a multitude of functions to help you do this

The first function we will learn about is the c() function.

The c() function is short for concatenate and we use it to join together a
series of values and store them in a data structure called a vector or “atomic
vector”

my_vec <- c(2, 3, 1, 6, 4, 3, 3, 7)
my_vec
[1] 2 3 1 6 4 3 3 7

2 / 19

Creating vectors in R

Now that we’ve created a vector. we can use other functions to do useful stuff
with this object

For example, we can calculate the mean, variance, standard deviation and
number of elements in our vector by using the mean(), var(), sd() and
length() functions

mean(my_vec) # returns the mean of my_vec
[1] 3.625

var(my_vec) # returns the variance of my_vec
[1] 3.982143

sd(my_vec) # returns the standard deviation of my_vec
[1] 1.995531

length(my_vec) # returns the number of elements in my_vec
[1] 8

3 / 19

Creating vectors in R

Scalar is a vector of length one

If we wanted to use any of these values later on in our analysis we can just
assign the resulting value to another object.

Important

vec_mean <- mean(my_vec) # returns the mean of my_vec
vec_mean
[1] 3.625

4 / 19

Vector basics

Atomic vectors are of six types:

logical
integer

double
character
complex

raw
Integer and double vectors are collectively known as numeric vectors.

5 / 19

Vector basics

6 / 19

Vector basics

Every vector has two key properties:

1. Its type, which you can determine with typeof()

2. Its length, which you can determine with length().

Vectors can also contain arbitrary additional metadata in the form of attributes
(More on this)

my_vec <- c(2, 3, 1, 6, 4, 3, 3, 7)
typeof(my_vec)
[1] "double"

length(my_vec)
[1] 8

later

7 / 19

file:///Users/mac/Documents/ast230-2024/docs/r/03-working-with-vector.html#attributes

Logical vectors

Logical vectors are the simplest type of atomic vector because they can take only
two possible values: FALSE and TRUE
x_l <- c(TRUE, FALSE, TRUE)
x_l
[1] TRUE FALSE TRUE

typeof(x_l)
[1] "logical"

is.logical(x_l)
[1] TRUE

8 / 19

Logical vectors

logical operator symbol in R

equal to ==

greater or greater equal >,>=

less or less equal <,<=

not equal !=
10 == 15
[1] FALSE

10 != 15
[1] TRUE

10 > 15
[1] FALSE

10 < 15
[1] TRUE

9 / 19

Numeric vectors

Integer and double vectors are known collectively as numeric vectors

In R, numbers are doubles by default. To make an integer, place an L after the
number:

x_d <- c(1., 5.5, 20.134, .32)
x_d
[1] 1.000 5.500 20.134 0.320

typeof(x_d); is.double(x_d)
[1] "double"
[1] TRUE

(x_i <- c(1L, 50L, 20L, 32L))
[1] 1 50 20 32

typeof(x_i); is.integer(x_i)
[1] "integer"
[1] TRUE

10 / 19

Character vectors

Character vectors are used to represent string values. You can think of
character strings as something like a word (or multiple words).

It is represented by a collection of characters between double quotes (")

x_c <- c("boy", "boy", "girl")
x_c
[1] "boy" "boy" "girl"

typeof(x_c)
[1] "character"

is.character(x_c)
[1] TRUE

11 / 19

Missing values

NULL is often used to represent the absence of a vector

NULL typically behaves like a vector of length 0

NA is used to represent the absence of a value in a vector.

my_vec1 <- NULL
my_vec1 <- c(my_vec1, 10)
my_vec1
[1] 10

my_vec2 <- c(18, 21, NA, 22)
my_vec2
[1] 18 21 NA 22

12 / 19

interger and double quantitative data

character qualitative data

logical binary data

→

→

→

13 / 19

Sequence of numbers

Sometimes it can be useful to create a vector that contains a regular sequence
of values in steps of one.

Here we can make use of a shortcut using the : (colon) symbol.

my_seq <- 1:10 # create regular sequence
my_seq
 [1] 1 2 3 4 5 6 7 8 9 10

my_seq2 <- 10:1 # in decending order
my_seq2
 [1] 10 9 8 7 6 5 4 3 2 1

-5:4
 [1] -5 -4 -3 -2 -1 0 1 2 3 4

14 / 19

Sequence of numbers: seq()

Other useful functions for generating vectors of sequences include the seq()
and rep() functions.

For example, to generate a sequence from 1 to 5 in steps of 0.5

Here we’ve used the arguments from = and to = to define the limits of the
sequence and the by = argument to specify the increment of the sequence.

Play around with other values for these arguments to see their effect

seq(from = 1, to = 5, by = 0.5)
[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

seq(from = 1, to = 5, length.out = 8)
[1] 1.000000 1.571429 2.142857 2.714286 3.285714 3.857143 4.428571 5.000000

15 / 19

Repeat vectors using rep()

The rep() function allows you to replicate (repeat) values a specified number
of times. To repeat the value 2, 10 times

The arguments times, each and length.out are used in rep() to obtain
different vectors

We can also repeat non-numeric values. e.g.

rep(2, times = 10)
 [1] 2 2 2 2 2 2 2 2 2 2

rep("boy", times = 3)
[1] "boy" "boy" "boy"

16 / 19

Repeat vectors using rep()

rep(c("boy", "girl"), each = 3)
[1] "boy" "boy" "boy" "girl" "girl" "girl"

rep(c("boy", "girl"), times = 3, each = 2)
 [1] "boy" "boy" "girl" "girl" "boy" "boy" "girl" "girl" "boy" "boy"
[11] "girl" "girl"

rep(c("boy", "girl"), length.out = 6)
[1] "boy" "girl" "boy" "girl" "boy" "girl"

17 / 19

Exercise 2

1. Create the vector (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) in three ways:

using c(), :, and seq() 2. Create the vector (2.1, 4.1, 6.1, 8.1) in two ways:

using c() and once seq() 3. Create the vector (0, 5, 10, 15) in 3 ways:

using c(), seq() with a by argument, and seq() with a length.out
argument.

4. Generate the following sequences using rep() or seq() functions.

(1, 1, 2, 2, 3, 3, 4, 4)

(1, 2, 2, 3, 3, 3, 4, 4, 4, 4)

(-0.50, -0.25, 0, 0.25, 0.5, 0.75, 1)

18 / 19

Exercise 2

5. Create the vector (101, 102, 103, 200, 205, 210, 1000, 1100, 1200) using a
combination of the c() and seq() functions

6. Create a vector that repeats the integers from 1 to 5, 10 times, i.e. (1, 2, 3, 4,
5, 1, 2, 3, 4, 5,), and the length of the vector should be 50!

7. Create the same vector as before, but this time repeat 1, 10 times, then 2, 10
times, etc., i.e. (1, 1, 1, , 2, 2, 2, , , 5, 5, 5) and the length of the
vector should also be 50

…

… … …

19 / 19

