

2/19

Creating vectors in R

e Up until now we've been creating simple objects by directly assigning a single
value to an object.

e It's very likely that you'll soon want to progress to creating more complicated
objects. Happily, R has a multitude of functions to help you do this

e The first function we will learn about is the c() function.

e The c() function is short for concatenate and we use it to join together a
series of values and store them in a data structure called a vector or “atomic
vector”

my_vec <- c(2, 3, 1, 6, 4, 3, 3, 7)
my_vec

[1] 23164337

-y

3/19

Creating vectorsin R

e Now that we've created a vector. we can use other functions to do useful stuff
with this object

e For example, we can calculate the mean, variance, standard deviation and
number of elements in our vector by using the mean(), var(), sd() and
Llength() functions

mean(my_vec) # returns the mean of my_vec

[1] 3.625

var(my_vec) # returns the variance of my_vec

[1] 3.982143

sd(my_vec) # returns the standard deviation of my_vec
[1] 1.995531

length(my_vec) # returns the number of elements in my_vec
[1] 8

-y

Creating vectorsin R

@ Important

Scalar is a vector of length one

o If we wanted to use any of these values later on in our analysis we can just
assign the resulting value to another object.

vec_mean <- mean(my_vec) # returns the mean of my_vec
vec_mean

[1] 3.625

-y

4/19

Vector basics

e Atomic vectors are of six types:
= logical
= integer
= double
= character
g —
0 —
e Integer and double vectors are collectively known as numeric vectors.

-y

5/19

Vector basics

-y

Vector

f

Atomic

!

Numeric

AN

Logical Integer

Double Character

6/19

Vector basics

e Every vector has two key properties:
1. Its type, which you can determine with typeof ()

my_vec <- c(2, 3, 1, 6, 4, 3, 3, 7)
typeof(my_vec)

[1] "double"

2. Its length, which you can determine with length().

length(my_vec)
[1] 8

e Vectors can also contain arbitrary additional metadata in the form of attributes
(More on this later)

-y

7/19

file:///Users/mac/Documents/ast230-2024/docs/r/03-working-with-vector.html#attributes

Logical vectors

Logical vectors are the simplest type of atomic vector because they can take only
two possible values: FALSE and TRUE

X_1 <— c(TRUE, FALSE, TRUE)
x_ 1

[1] TRUE FALSE TRUE
typeof(x_1)

[1] "logical"
is.logical(x_1)

[1] TRUE

-y

8/19

9/19

Logical vectors
logical operator symbol in R
equal to ==
greater or greater equal > >=
less or less equal <,<=
not equal I =
10 == 15
[1] FALSE
10 '= 15
[1] TRUE
10 > 15
[1] FALSE
10 < 15
[1] TRUE

-y

10/19

Numeric vectors

e Integer and double vectors are known collectively as numeric vectors

e In R, numbers are doubles by default. To make an integer, place an L after the
number:

x_d <- c(1., 5.5, 20.134, .32)
x_d

[1] 1.000 5.500 20.134 0.320
typeof(x_d); is.double(x_d)

[1] "double"
[1] TRUE

(x_i <- c(1L, 50L, 20L, 32L))
[1] 1 50 20 32
typeof(x_1i); is.integer(x_i)

[1] "integer"
[1] TRUE

-y

Character vectors

e Character vectors are used to represent string values. You can think of
character strings as something like a word (or multiple words).

e It is represented by a collection of characters between double quotes (")

X_C <_ C(Ilboyll’ Ilboyll’ Ilgir'Lll)
X_C

[1] Ilboyll Ilboyll llgir'Lll
typeof(x_c)
[1] "character"

is.character(x_c)

[1] TRUE

-y

11/19

Missing values

e NULL is often used to represent the absence of a vector

= NULL typically behaves like a vector of length O

my_vecl <— NULL
my_vecl <- c(my_vecl, 10)
my_vecl

[1] 10

e NA is used to represent the absence of a value in a vector.
my_vec2 <- c(18, 21, NA, 22)

my_vec?2
[1] 18 21 NA 22

-y

12/19

e interger and double — quantitative data
e character — qualitative data

e logical — binary data

-y

13/19

Sequence of numbers

e Sometimes it can be useful to create a vector that contains a regular sequence
of values in steps of one.

e Here we can make use of a shortcut using the : (colon) symbol.

my_seq <—- 1:10 # create regular sequence
my_seq

[1] 1 2 3 4 5 6 7 8 910

my_seq2 <- 10:1 # in decending order
my_seq2

[11 16 9 8 7 6 5 4 3 2 1
-5:4
[1] -5-4-3-2-1 0 1 2 3 4

-y

14 /19

-y

15/19

Sequence of numbers: seq()

o Other useful functions for generating vectors of sequences include the seq()
and rep() functions.

e For example, to generate a sequence from 1 to 5 in steps of 0.5

seq(from = 1, to = 5, by = 0.5)
[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
seq(from = 1, to = 5, length.out = 8)

[1] 1.000000 1.571429 2.142857 2.714286 3.285714 3.857143 4.428571 5.000000

e Here we've used the arguments from =and to = to define the limits of the
sequence and the by = argument to specify the increment of the sequence.

e Play around with other values for these arguments to see their effect

Repeat vectors using rep ()

e The rep() function allows you to replicate (repeat) values a specified number
of times. To repeat the value 2, 10 times

rep(2, times = 10)
[11 2222222222

e The arguments times, each and length.out are used in rep() to obtain
different vectors

e We can also repeat non-numeric values. e.g.

rep("boy", times = 3)
[1] Ilboyll Ilboyll Ilboyll

-y

16/19

Repeat vectors using rep()

rep(c("boy", "girl"), each = 3)
[1] Ilboyll Ilboyll Ilboyll Ilgir'Lll Ilgirlll Ilgir.'l-ll

rep(c("boy", "girl"), times = 3, each = 2)

[1] Ilboyll Ilboyll Ilgir'Lll Ilgirlll Ilboyll Ilboyll Ilgir.'Lll Ilgir'Lll Ilboyll

[11] "girl" "gir-l."
rep(c("boy", "girl"), length.out = 6)
[1] Ilboyll Ilgir'Lll Ilboyll Ilgir'Lll Ilboyll Ilgir.'l-ll

-y

Ilboyll

17 /19

18 /19

Exercise 2

1. Create the vector (1, 2, 3,4, 5, 6, 7, 8,9, 10) in three ways:
e using c(), :, and seq() 2. Create the vector (2.1, 4.1, 6.1, 8.1) in two ways:
e using c() and once seq() 3. Create the vector (0, 5, 10, 15) in 3 ways:

e using c(), seq() with a by argument, and seq() with a length.out
argument.

4. Generate the following sequences using rep() or seq() functions.

e (1,1,2,2,3,3,4,4)

e (1,2,2,3,3,3,4,4,4,4)

e (-0.50, -0.25, 0, 0.25, 0.5, 0.75, 1)
Q7

19/19

Exercise 2

5. Create the vector (101, 102, 103, 200, 205, 210, 1000, 1100, 1200) using a
combination of the c() and seq() functions

6. Create a vector that repeats the integers from 1 to 5, 10 times, i.e. (1, 2, 3, 4,
51,2, 3,4,5,...), and the length of the vector should be 50!

/. Create the same vector as before, but this time repeat 1, 10 times, then 2, 10
times, etc.,ie. (1,1,1, ...,2,2,2,...,...,5,5,5) and the length of the
vector should also be 50

-y

