
3 Working with vectors
(AST230) R for Data Science

Md Rasel Biswas

1 / 35

Vectors

A variable or an R object with more than one value is known as a vector, and
in R, there are two types of vectors: atomic vectors and lists

Atomic vector consists of the same type of elements, e.g. all doubles or all
characters.

List can have elements of different data types, i.e. one element of a list
could be a numeric value, and the other could be a character value. [More
on lists]

Most of the time, atomic vectors are just called vectors (we’ve already done
this in the last section, and we’ll keep doing it throughout the course!).

While lists are also technically vectors, we like to keep things clear by simply
calling them “lists.” It makes things easier to understand

later

2 / 35

file:///Users/mac/Documents/ast230-2024/docs/r/04-data-structures.html

Vectors

3 / 35

Vector operations:

4 / 35

Combining vectors

The function c() merges an arbitrary number of vectors to one vector

R will quite happily do arithmetic operations with vectors as well

x <- c(10, 15)
c(1:5, x, 100, x)
 [1] 1 2 3 4 5 10 15 100 10 15

x+3
[1] 13 18

x/3
[1] 3.333333 5.000000

5 / 35

Arithmetic operations

Functions work on vectors as they do on individual objects.

Arithmetic operations can also be done with two vectors

log(x)
[1] 2.302585 2.708050

x <- c(10, 15, 20)
y <- c(1, 2, 3)
x*y
[1] 10 30 60

6 / 35

The recycling rule of vectors

It is not necessary to have vectors of the same length in an expression

If two vectors in an expression are not of the same length then the shorter
one will be repeated until it has the same length as the longer one.

m <- c(1, 2, 3); n <- c(3, 4, 5, 7, 50)
m*n
Warning in m * n: longer object length is not a multiple of shorter object
length
[1] 3 8 15 7 100

7 / 35

Some vector functions:

8 / 35

Some vector functions

x <- c(10, 8, 9, 16, 9, 8, 16)
sort(x)
[1] 8 8 9 9 10 16 16

order(x)
[1] 2 6 3 5 1 4 7

table(x)
x
 8 9 10 16
 2 2 1 2

unique(x)
[1] 10 8 9 16

9 / 35

Summary statistics on vectors

Function Example Output

sum(), prod() sum(1:10) 55

min(), max() min(1:10) 1

mean(), median() median(1:10) 5.5

sd(), var() sd(1:10) 3.0276504

quantile() quantile(1:10) 1, 3.25, 5.5, 7.75, 10

Check the help pages of the R functions related to these summary statistics

10 / 35

Vector indexing:

11 / 35

Extracting elements of vectors:

To extract (also known as indexing or subscripting) one or more values (more
generally known as elements) from a vector, we use the square bracket []
notation

12 / 35

Indexing vectors with [] (Positional indexing)

A vector of the age of five children

Age of a specific child, say the third
child

Age of several children

The positional index starts at 1 rather than 0 like some other programming languages (e.g. C, Python)

age <- c(11, 9, 8, 10, 5)
age
[1] 11 9 8 10 5

age[3]
[1] 8

age[c(2, 3, 5)]
[1] 9 8 5

age[c(3, 5, 2, 2)]
[1] 8 5 9 9

age[-c(1, 3)]
[1] 9 10 5

Note

13 / 35

Indexing vectors with [] (Logical indexing)

Number of children with age 8 years or
more

Select the observations greater than 8
years

age
[1] 11 9 8 10 5

age >= 8
[1] TRUE TRUE TRUE TRUE FALSE

sum(age >= 8)
[1] 4

age[age >= 8]
[1] 11 9 8 10

14 / 35

Indexing vectors with [] (Logical indexing)

Children with age 11 or 8 years

Children with ages not equal to 11 or 8 years

age
[1] 11 9 8 10 5

age[age %in% c(8, 11)]
[1] 11 8

age[!age %in% c(8, 11)]
[1] 9 10 5

15 / 35

Indexing vectors with [] (Logical indexing)

Observations with age greater than 9 or less than 8

Observations with ages between 8 to 10 inclusive

The mean age of observations between 8 to 10 inclusive

age
[1] 11 9 8 10 5

age[age > 9 | age < 8]
[1] 11 10 5

age[age >= 8 & age <= 10]
[1] 9 8 10

mean(age[age >= 8 & age <= 10])
[1] 9

16 / 35

Replacing elements

Changing values of a vector Change the first child’s age to 15

Change it to 20 if it is greater than 9

age <- c(11, 9, 8, 10, 5)
age1 <- age
age1
[1] 11 9 8 10 5

age2 <- age
age2
[1] 11 9 8 10 5

age1[1] <- 15
age1
[1] 15 9 8 10 5

age2[age2 > 9] <- 20
age2
[1] 20 9 8 20 5

17 / 35

Ordering elements

age <- c(11, 9, 8, 10, 5)
sort(age)
[1] 5 8 9 10 11

sort(age, decreasing = TRUE)
[1] 11 10 9 8 5

order(age)
[1] 5 3 2 4 1

age[order(age)] #equivalent to sort()
[1] 5 8 9 10 11

18 / 35

Exercise 3

The following code generates a vector nage of size 1000.

Show that the number of observations

i. greater than 70 is 176

ii. less than 40 is 185

iii. equal to 39 is 19

iv. greater than 77 or less than 35 is 140

v. between 50 and 55 (inclusive) is 110

What percentage of observations lies between 70 to 75 (inclusive)?

set.seed(100)
nage <- sample(x = 30:80, size = 1000, replace = T)

19 / 35

Missing values

In R, missing values are coded as NA meaning ‘Not available’

Most of the R functions return missing value (i.e. NA) if any input vector
contains a missing value

5 + NA
[1] NA

mval <- c(12:15, NA)
mval
[1] 12 13 14 15 NA

mean(mval)
[1] NA

20 / 35

Indexing vectors with [] (Logical indexing)

Most of the R functions have an argument na.rm, which takes a logical value
to include (or exclude) the missing value in (from) the calculation

mval
[1] 12 13 14 15 NA

mean(mval)
[1] NA

mean(mval, na.rm = T)
[1] 13.5

is.na(mval)
[1] FALSE FALSE FALSE FALSE TRUE

sum(!is.na(mval))
[1] 4

21 / 35

Coercion:

22 / 35

Coercion

In R, atomic vectors are homogeneous, i.e., all elements of an atomic vector
will be of the same data type

If you attempt to create an atomic vector with more than one data type,
e.g. nvec <- c(1, 2, "all"), then R will create an atomic vector, i.e. all
elements of nvec will be of the same data type, which is known as coercion

nvec <- c(1, 2, "all")
nvec
[1] "1" "2" "all"

typeof(nvec)
[1] "character"

23 / 35

Coercion

In R, coercion occurs in the following (decreasing) order of precedence

1. Character 2. Numeric 3. Integer 4. Logical

c(1L, 5L, FALSE, TRUE)
[1] 1 5 0 1

typeof(c(1L, 2L, 4.0))
[1] "double"

typeof(c(2.0, "new"))
[1] "character"

"A" > 10
[1] TRUE

24 / 35

Explicit coercion

Objects can be explicitly coerced from one type to another using as.**
functions, if available

x <- 0:5
typeof(x)
[1] "integer"

as.numeric(x)
[1] 0 1 2 3 4 5

as.logical(x)
[1] FALSE TRUE TRUE TRUE TRUE TRUE

as.character(x)
[1] "0" "1" "2" "3" "4" "5"

25 / 35

Explicit coercion

Nonsensical coercion results in NAs

x <- c("a", "b", "0", "522")
as.numeric(x)
Warning: NAs introduced by coercion
[1] NA NA 0 522

as.logical(x)
[1] NA NA NA NA

26 / 35

Attributes:

27 / 35

Attributes

An attribute is a piece of information that you can attach to an atomic vector
(or any R object) and it won’t affect any of the values in the object, and it will
usually not appear when displaying the object.

Attributes are metadata and R will normally ignore it, but some R functions will
check for specific attributes

Atomic vectors can be transformed into some other important R data
structures, e.g., matrices, arrays, factors, or date-times by adding attributes

Attributes can be retrieved and modified by attr() or attributes()

28 / 35

Attributes

an atomic vector that initially has no attributes
die <- 1:6
attributes(die)
NULL

Setting an attribute named "x"
attr(die, "x") <- "abcd"
attributes(die)
$x
[1] "abcd"

Now it has an attribute
die
[1] 1 2 3 4 5 6
attr(,"x")
[1] "abcd"

29 / 35

Attributes

Two mostly used attributes are:

1. names, a character vector giving each element a name.

2. dim, short for dimensions, an integer vector, used to turn vectors into
matrices or arrays.

30 / 35

1. Names

names is one of the common attributes of an R object. We can set names to an
atomic vector in various ways. Two of them are:
Naming vector when creating it:
x <- c(a = 1, b = 2, c = 3)
x
a b c
1 2 3

Naming vector by assigning a character vector to names()
x <- 1:3
names(x) <- c("a", "b", "c")
x
a b c
1 2 3

31 / 35

1. Names

Subsetting vector by names
x[["a"]]
[1] 1

Attributes are preserved by most operations
y <- x^2 + 1
names(y)
[1] "a" "b" "c"

Removing the attributes
names(x) <- NULL
x
[1] 1 2 3

32 / 35

2. Dimensions

An atomic vector can be transformed into -dimensional array by adding a
dimension attribute with dim

n

Adding the dim attribute
die1 <- 1:6
dim(die1) <- c(2, 3)

it's a matrix now
die1
 [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

Modifying the dim attribute
dim(die1) <- c(3, 2)
die1
 [,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

See the attributes
attributes(die1)
$dim
[1] 3 2

33 / 35

2. Dimensions

Creating 3 dimensional array
by adding dim attributes
die <- 1:6
dim(die) <- c(1, 2, 3)
die
, , 1

 [,1] [,2]
[1,] 1 2

, , 2

 [,1] [,2]
[1,] 3 4

, , 3

 [,1] [,2]
[1,] 5 6

Creating 3 dimensional array
by adding dim attributes
die12 <- 1:12
dim(die12) <- c(2, 2, 3)
die12
, , 1

 [,1] [,2]
[1,] 1 3
[2,] 2 4

, , 2

 [,1] [,2]
[1,] 5 7
[2,] 6 8

, , 3

 [,1] [,2]
[1,] 9 11
[2,] 10 12

34 / 35

2. Dimensions

R will always use the first value in dim for the number of rows and the second
value for the number of columns

R always fills up each matrix by columns, instead of by rows

R functions matrix() and array() can be used to control how the columns
and rows of a matrix will be arranged ()More on next section

35 / 35

file:///Users/mac/Documents/ast230-2024/docs/r/04-data-structures.html

