
4 Data structures in R

(AST230) R for Data Science
Md Rasel Biswas

1 / 38

Data in R

Until now, you’ve created fairly simple data in R and stored it as a vector.

However, most (if not all) of you will have much more complicated datasets
from your various experiments and surveys that go well beyond what a vector
can handle.

In previous lectures we’ve gone through the main four data types (i.e vector
types) in R, i.e. logical, integer, double, character

Now let’s have a look at some of main structures that we have for storing
these data.

2 / 38

Data Structures

R has many data structures, some of the important ones are:

1. Atomic vectors
2. Matrices
3. Arrays
4. Factors
5. Lists
6. Data frames
7. Tibbles

3 / 38

1 Atomic Vectors

Perhaps the simplest type of data structure is the vector

You’ve already been introduced to vectors

Vectors that have a single value (length 1) are called scalars

key thing to remember is that all the elements inside a vector must be of the
same data type

4 / 38

2 Matrices

When a rectangular data structure contains a single type of data in all its cells
(i.e., in all its rows and columns), we have a matrix of data.

In R, a matrix really is an atomic vector that is tweaked into another shape
(i.e., a re-shaped vector).

Internally, this is implemented by taking a vector and adding attributes that
describe its shape and the names of its rows or columns

5 / 38

2 Matrices

R function matrix() is used to create a matrix from a atomic vector.

creating matrix using matrix()
A = matrix(
 c(1, 2, 3, 4, 5, 6, 7, 8, 9),
 nrow = 3,
 ncol = 3,
 byrow = TRUE
)
A
 [,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9

6 / 38

2 Matrices

matrix(1:6, nrow = 2) # default: byrow = FALSE
 [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

Creating matrix using rbind() or cbind()
rbind(1:3, 11:13, 33:35)
 [,1] [,2] [,3]
[1,] 1 2 3
[2,] 11 12 13
[3,] 33 34 35

cbind(letters[1:2], c("k", "m"), letters[18:19])
 [,1] [,2] [,3]
[1,] "a" "k" "r"
[2,] "b" "m" "s"

7 / 38

2 Matrices

Creating matrix by adding dim attribute
z <- 1:6
dim(z) <- c(2, 3)
z
 [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

8 / 38

3 Arrays

Arrays are just multidimensional matrices

Creating array using array()
A = array(c(1, 2, 3, 4, 5, 6, 7, 8), dim = c(2, 2, 2))
A
, , 1

 [,1] [,2]
[1,] 1 3
[2,] 2 4

, , 2

 [,1] [,2]
[1,] 5 7
[2,] 6 8

9 / 38

3 Arrays

Creating array by adding dim attribute
z <- 1:18
dim(z) <- c(2, 3, 3)
z
, , 1

 [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

, , 2

 [,1] [,2] [,3]
[1,] 7 9 11
[2,] 8 10 12

, , 3

 [,1] [,2] [,3]
[1,] 13 15 17
[2,] 14 16 18

10 / 38

3 Arrays

Summary:

Like vectors and matrices, arrays must contain elements all of the same data
types.

Data structures like matrices, or arrays are built on top of atomic vectors by
adding attributes

In other words, matrices and arrays are just atomic vectors with a dim()
(dimension) attribute

11 / 38

Calculations on matrices

Sometimes it’s also useful to define row and column names for your matrix

my_mat <- matrix(1:16, nrow = 4, byrow = TRUE)
rownames(my_mat) <- c("A", "B", "C", "D")
colnames(my_mat) <- c("a", "b", "c", "d")
my_mat
 a b c d
A 1 2 3 4
B 5 6 7 8
C 9 10 11 12
D 13 14 15 16

12 / 38

Calculations on matrices

The usual matrix addition, multiplication etc can be performed. Note the use of
the %*% operator to perform matrix multiplication.

mat1 <- matrix(c(2, 0, 1, 1), nrow = 2)
mat1
 [,1] [,2]
[1,] 2 1
[2,] 0 1

mat2 <- matrix(c(1, 1, 0, 2), nrow = 2)
mat2
 [,1] [,2]
[1,] 1 0
[2,] 1 2

mat1 + mat2 # matrix addition
 [,1] [,2]
[1,] 3 1
[2,] 1 3

element by element products
mat1 * mat2
 [,1] [,2]
[1,] 2 0
[2,] 0 2

matrix multiplication
mat1 %*% mat2
 [,1] [,2]
[1,] 3 2
[2,] 1 2

13 / 38

Basic martrix functions

R has numerous built in functions to perform matrix operations

For example, to transpose a matrix we use the transposition function t()

To extract the diagonal elements of a matrix and store them as a vector we
can use the diag() function.

my_mat_t <- t(my_mat)
my_mat_t
 A B C D
a 1 5 9 13
b 2 6 10 14
c 3 7 11 15
d 4 8 12 16

my_mat_diag <- diag(my_mat)
my_mat_diag
[1] 1 6 11 16

14 / 38

Basic martrix functions

Functions Description

chol(x) Choleski decomposition

t(x) Transpose of a matrix .

diag(x) Extracts the diagonal elements of a matrix

ncol(x) Returns the number of columns

nrow(x) Returns the number of rows

colSums(x) Returns the sum of columns

rowSums(x) Returns the sum of rows

solve(A,b) Solve the system

solve(x) Calculate the inverse

x

Ax = b

15 / 38

Exercise 4

1. Create a vector called x consisting of the first fifteen integers of the number
line.

2. Use the function dim() to assign dimension to vector x with three rows and
five columns. What is the class of x now?

3. Given the following matrices,

i. Calculate .

ii. Find the inverse of matrix .

iii. Solve the equation for , where .

A = ​ ​ ​ ​ ​ ​ b =

2
0
7
7

9
4
5
8

0
1
5
7

0
4
1
4

​ ​ ​

−1
6
0
9

A bT

A

x Ax = b

16 / 38

Exercise 4

4.

i. Generate a vector x0 of order 20 with all elements as 1

ii. Generate a vector x1 of order 20 with elements randomly selected from 30:70,
consider a seed 80

iii. Create a matrix X with the first column x0 and the second column x1
iv. Generate a vector Y of order 20 using the equation

where

v. Obtain the value of , use the R function solve() to obtain an
inverse of a square matrix.

y ​ =i 1.2 + 1.8x1 + ϵ ​,i
ϵ ​ ∼i N(0, 9)

(X X) X Y′ −1 ′

17 / 38

S3 Atomic Vectors:

Remember: matrices, arrays are just atomic vectors that are reshaped

In addition to these regular atomic vectors, there are some S3 atomic vectors

One of the most important vector attributes is class, which underlies the S3
object system

A class attribute turns an object into an S3 object, which means it will behave
differently from a regular vector when passed to a generic function

Every S3 object is built on top of a base type, and often stores additional
information in other attributes

18 / 38

S3 Atomic Vectors:

Some important S3 vectors used in base R are

Categorical data recorded in factor vector

Dates are stored in Date vector

Date-times are stored in POSIXct and POSIXlt vectors

Among these, we will discuss only the factor vector.

19 / 38

S3 Atomic Vectors:

20 / 38

4 Factors

Factors are used to store categorical information in R, a categorical variable
has only pre-defined levels, e.g., gender has two levels male and female
Factors are similar to character data except it can take only predefined
values

Factors are built on top of an integer vector with two attributes:

a class, “factor”, which makes it behave differently from regular integer
vectors, and

levels, which defines the set of allowed value

Factors look like strings, but behave like integers

21 / 38

4 Factors

The function factor() is used to create factor vector from an atomic vector
and it has the following arguments

x data vector

levels values of x that will be used as the level of the factor

labels a vector of labels for the levels

→

→

→

Creating factor using factor()
fac = factor(x = c(1, 2, 1, 1, 2, 1, 2),
 levels = c(1, 2),
 labels = c("Male", "Female"))
fac
[1] Male Female Male Male Female Male Female
Levels: Male Female

as.character(fac)
[1] "Male" "Female" "Male" "Male" "Female" "Male" "Female"

22 / 38

4 Factors

not providing levels
fac1 = factor(c("Male", "Female", "Male",
 "Male", "Female", "Male", "Female"))
fac1
[1] Male Female Male Male Female Male Female
Levels: Female Male

providing levels
fac2 = factor(c("Male", "Female", "Male",
 "Male", "Female", "Male", "Female"),
 levels = c("Male", "Female"))
fac2
[1] Male Female Male Male Female Male Female
Levels: Male Female

typeof(fac1)
[1] "integer"

attributes(fac1)
$levels
[1] "Female" "Male"

$class
[1] "factor"

23 / 38

5 Lists

List is a vector with heterogeneous elements, i.e., each element of a list can
be any type

The function list() is used to create a list

list1 <- list(1:3,
 "a",
 c(TRUE, FALSE, FALSE),
 c(2.5, 5.1, 9))
list1
[[1]]
[1] 1 2 3

[[2]]
[1] "a"

[[3]]
[1] TRUE FALSE FALSE

[[4]]
[1] 2.5 5.1 9.0

24 / 38

5 Lists

typeof(list1)
[1] "list"

is.list(list1)
[1] TRUE

length(list1)
[1] 4

str(list1)
List of 4
 $: int [1:3] 1 2 3
 $: chr "a"
 $: logi [1:3] TRUE FALSE FALSE
 $: num [1:3] 2.5 5.1 9

25 / 38

5 Lists

Lists are sometimes called recursive vectors because a list can contain other
lists. This makes them fundamentally different from atomic vectors

List

l3 <- list(list(list("First list")))
str(l3)
List of 1
 $:List of 1
 ..$:List of 1
 $: chr "First list"

26 / 38

S3 Lists:

Recall: Data structures like matrices, arrays, or factors are built on top of
atomic vectors by adding attributes.

Similarly, in addition to the regular lists, there are two important S3 vectors
built on top of lists

They are are data frames and tibbles.

27 / 38

6 Data Frames

A data frame is a named list of vectors with attributes for (column) names,
row.names, and its class, “data.frame”

In contrast to a regular list, a data frame has an additional constraint:

the length of each of its vectors must be the same

This gives data frames their rectangular structure

Columns are variables, and rows are observations

Data frame is R’s equivalent to spreadsheet

If you do data analysis in R, you’re going to be using data frames

28 / 38

6 Data Frames

R function data.frame() is used to create a new data frame, where atomic
vectors can be used as inputs

Creating a data frame
name = c("Fahim", "Abir", "Aman")
language = c("R", "Python", "Java")
age = c(22, 25, 45)
df = data.frame(name, language, age)
df
 name language age
1 Fahim R 22
2 Abir Python 25
3 Aman Java 45

typeof(df)
[1] "list"

attributes(df)
$names
[1] "name" "language" "age"

$class
[1] "data.frame"

29 / 38

6 Data Frames

While the attributes of data frame and matrix are different, a matrix can be
transformed into a data frame using the function as.data.frame()

mat1 <- matrix(1:12, nrow = 3)
attributes(mat1)
$dim
[1] 3 4

mat2 <- as.data.frame(mat1)

attributes(mat2)
$names
[1] "V1" "V2" "V3" "V4"

$class
[1] "data.frame"

$row.names
[1] 1 2 3

30 / 38

6 Data Frames

There are various ways to inspect a data frame, such as:

str() gives a very brief description of the data

names() gives the name of each variable in the data

summary() gives some very basic summary statistics for each variable

head() shows the first few rows

tail() shows the last few rows

31 / 38

6 Data Frames

32 / 38

7 Tibbles

Data frame is one of the most important ideas in R and it is one of the things
that make R different from other programming languages

Data frames are created more than 20 years ago and over the years, the way
people use R have changed

Some of the design decisions of data frame do not go well with current way of
using R

Tibbles are similar to data frames and it overcome some of limitations of data
frames

33 / 38

7 Tibbles

Tibbles are not the part of the base R, it is in the R package tibble
To use tibble, one need to load the package tibble to the current R
environment

Load the tibble package
library(tibble)
Create a tibble with three columns: name, age, and city
my_data <- tibble(
 name = c("Samir", "Amir", "Aman"),
 age = c(25, 30, 35),
 city = c("Dhaka", "Khulna", "Jashore")
)
my_data
A tibble: 3 × 3
 name age city
 <chr> <dbl> <chr>
1 Samir 25 Dhaka
2 Amir 30 Khulna
3 Aman 35 Jashore

34 / 38

Data frame vs. Tibble

Data frame Tibble
df2 <- data.frame(
 x = 1:3,
 y = LETTERS[1:3],
 z = c(2, 4, 6)
)
df2
 x y z
1 1 A 2
2 2 B 4
3 3 C 6

typeof(df2)
[1] "list"

tb2 <- tibble(
 x = 1:3,
 y = LETTERS[1:3],
 z = x * 2
)
tb2
A tibble: 3 × 3
 x y z
 <int> <chr> <dbl>
1 1 A 2
2 2 B 4
3 3 C 6

typeof(tb2)
[1] "list"

35 / 38

Data frame vs. Tibble

Data frame Tibble
attributes(df2)
$names
[1] "x" "y" "z"

$class
[1] "data.frame"

$row.names
[1] 1 2 3

str(df2)
'data.frame': 3 obs. of 3 variables:
 $ x: int 1 2 3
 $ y: chr "A" "B" "C"
 $ z: num 2 4 6

attributes(tb2)
$class
[1] "tbl_df" "tbl" "data.frame"

$row.names
[1] 1 2 3

$names
[1] "x" "y" "z"

str(tb2)
tibble [3 × 3] (S3: tbl_df/tbl/data.frame)
 $ x: int [1:3] 1 2 3
 $ y: chr [1:3] "A" "B" "C"
 $ z: num [1:3] 2 4 6

36 / 38

Data frame vs. Tibble

While data frames automatically recycle columns that are an integer multiple
of the longest column, tibbles will only recycle vectors of length one

Data frame Tibble
data.frame(x = 1:4, y = 1:2)
 x y
1 1 1
2 2 2
3 3 1
4 4 2

data.frame(x = 1:4, y = 1:3)
Error in data.frame(x = 1:4, y = 1:3): arguments
imply differing number of rows: 4, 3

tibble(x = 1:4, y = 1:2)
Error in `tibble()`:
! Tibble columns must have compatible sizes.
• Size 4: Existing data.
• Size 2: Column `y`.
ℹ Only values of size one are recycled.

tibble(x = 1:4, y = 1)
A tibble: 4 × 2
 x y
 <int> <dbl>
1 1 1
2 2 1
3 3 1
4 4 1

37 / 38

Data frame vs. Tibble

A data frame mtcars is available in base R

head(mtcars, 2)
 mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21 6 160 110 3.9 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21 6 160 110 3.9 2.875 17.02 0 1 4 4

mtcars_t <- as_tibble(mtcars)
mtcars_t
A tibble: 32 × 11
 mpg cyl disp hp drat wt qsec vs am gear carb
 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
 4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
 5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
 6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
 7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
 8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
 9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4
ℹ 22 more rows

38 / 38

