
13 Joining

1 / 19

Joins

It’s rare that a data analysis involves only a single data frame.

Typically you have many data frames, and you must join them together to
answer the questions that you’re interested in.

2 / 19

Motivational example

Year 1 Year 2
A tibble: 7 × 4
 id gender ast101 ast102
 <int> <chr> <dbl> <dbl>
1 101 F 57 49
2 102 M 51 51
3 103 F 72 26
4 104 F 58 58
5 105 M 65 32
6 106 M 57 62
7 107 F 65 66

A tibble: 7 × 3
 id ast201 ast202
 <dbl> <dbl> <dbl>
1 101 77 43
2 102 72 34
3 103 65 41
4 104 76 39
5 105 75 37
6 106 70 35
7 201 76 65

3 / 19

Motivational example

Create a variable grade which takes the following values:

4.0 (for), 3.75 (for),

3.5 (for), 3.25 (for),

3.0 (for), , 2.5 (for), and

0 (for)

score ≥ 80 75 ≤ score < 80
70 ≤ score < 75 65 ≤ score < 70
60 ≤ score < 65 50 ≤ score < 65

score < 50

4 / 19

Motivational example

Suppose, ast101 and ast201 are 4-credit course and other courses are of three
credits

Calculate the GPA for each student for two years separately

Calculate CGPA, i.e., overall performance of each student

Compare the performance of male and female on the basis of CGPA

5 / 19

Joins

dplyr provides six join functions:

left_join(), inner_join(), right_join(), and full_join()
semi_join(), and anti_join()

They all have the same interface:

they take a pair of data frames (x and y) and return a data frame

6 / 19

Mutating joins

A mutating join allows you to combine variables from two data frames:

it first matches observations by their keys, then copies across variables from
one data frame to the other

Like mutate(), the join functions add variables to the right

There are four types of mutating join

left_join(), inner_join(), right_join(), full_join()

7 / 19

Joins

Let’s define two simple tibbles x and y.

x <- tribble(
 ~key, ~val_x,
 1, "x1",
 2, "x2",
 3, "x3"
)
y <- tribble(
 ~key, ~val_y,
 1, "y1",
 2, "y2",
 4, "y3"
)

8 / 19

Joins

To understand how joins work, it’s useful to think of every possible match.

Here we show that with a grid of connecting lines

9 / 19

Inner join

xy <- inner_join(x = x, y = y, by = "key")

xy
A tibble: 2 × 3
 key val_x val_y
 <dbl> <chr> <chr>
1 1 x1 y1
2 2 x2 y2

10 / 19

Inner join

xy_left <- left_join(x = x, y = y, by = "key")

xy_left
A tibble: 3 × 3
 key val_x val_y
 <dbl> <chr> <chr>
1 1 x1 y1
2 2 x2 y2
3 3 x3 <NA>

11 / 19

Inner join

xy_right <- right_join(x = x, y = y,
 by = "key")

xy_right
A tibble: 3 × 3
 key val_x val_y
 <dbl> <chr> <chr>
1 1 x1 y1
2 2 x2 y2
3 4 <NA> y3

12 / 19

Inner join

xy_full <- full_join(x = x, y = y, by = "key")

xy_full
A tibble: 4 × 3
 key val_x val_y
 <dbl> <chr> <chr>
1 1 x1 y1
2 2 x2 y2
3 3 x3 <NA>
4 4 <NA> y3

13 / 19

Inner join

The following Venn diagrams showing the difference between inner, left, right,
and full joins.

14 / 19

Filtering joins

15 / 19

Filtering joins

Mutating joins add columns from y to x, matching rows based on the key.

Filtering joins filter rows from based on the presence or absence of matches
in .

Two types of filtering join:

semi_join(), and anti_join()

x
y

16 / 19

Filtering joins

semi_join() return all rows from x with a match in y

17 / 19

Filtering joins

anti_join() keeps rows in x that match zero rows in y

18 / 19

Exam data

Year 1 Year 2

Calculate CGPA, i.e., overall performance of each student

Compare the performance of male and female on the basis of CGPA

A tibble: 7 × 4
 id gender ast101 ast102
 <int> <chr> <dbl> <dbl>
1 101 F 57 49
2 102 M 51 51
3 103 F 72 26
4 104 F 58 58
5 105 M 65 32
6 106 M 57 62
7 107 F 65 66

A tibble: 7 × 3
 id ast201 ast202
 <dbl> <dbl> <dbl>
1 101 77 43
2 102 72 34
3 103 65 41
4 104 76 39
5 105 75 37
6 106 70 35
7 201 76 65

19 / 19

