13 Joining

- It's rare that a data analysis involves only a single data frame.
- Typically you have many data frames, and you must join them together to answer the questions that you're interested in.

Year 1

# A tibble: 7 × 4				
	id	gender	ast101	ast102
	<int></int>	<chr></chr>	<dbl></dbl>	<dbl></dbl>
1	101	F	57	49
2	102	М	51	51
3	103	F	72	26
4	104	F	58	58
5	105	М	65	32
6	106	М	57	62
7	107	F	65	66

Year 2

#	A tib	ole: 7 >	< 3
	id	ast201	ast202
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	101	77	43
2	102	72	34
3	103	65	41
4	104	76	39
5	105	75	37
6	106	70	35
7	201	76	65

Motivational example

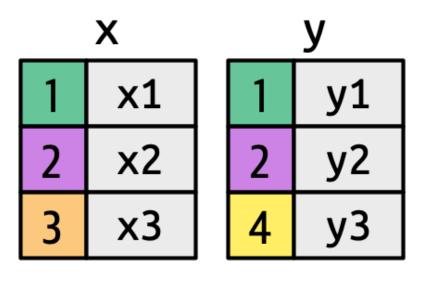
- Create a variable grade which takes the following values:
 - 4.0 (for score ≥ 80), 3.75 (for $75 \le score < 80$),
 - 3.5 (for $70 \le \text{score} < 75$), 3.25 (for $65 \le \text{score} < 70$),
 - 3.0 (for $60 \le \text{score} < 65$), , 2.5 (for $50 \le \text{score} < 65$), and
 - 0 (for score < 50)

- Suppose, ast101 and ast201 are 4-credit course and other courses are of three credits
- Calculate the GPA for each student for two years separately
- Calculate CGPA, i.e., overall performance of each student
- Compare the performance of male and female on the basis of CGPA

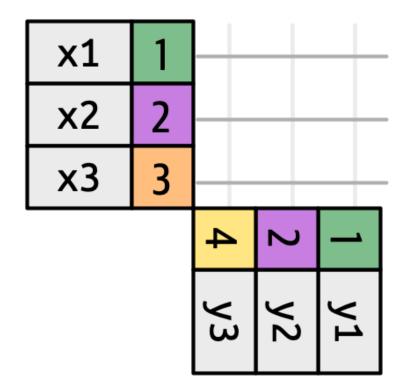
- dplyr provides six join functions:
 - left_join(), inner_join(), right_join(), and full_join()
 - semi_join(), and anti_join()
- They all have the same interface:
 - they take a pair of data frames (x and y) and return a data frame

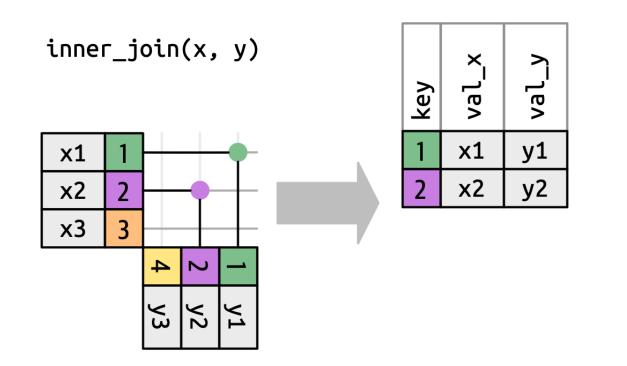
6/19

Mutating joins

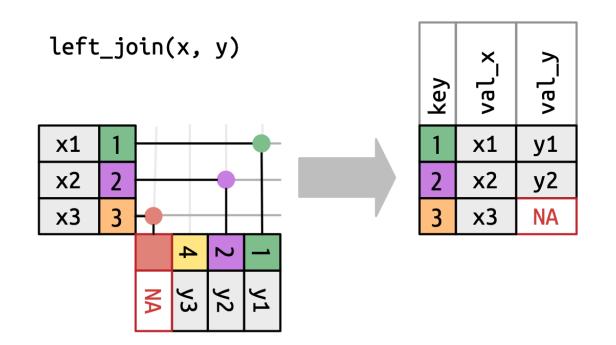

- A mutating join allows you to combine variables from two data frames:
 - it first matches observations by their keys, then copies across variables from one data frame to the other
 - Like mutate(), the join functions add variables to the right
- There are four types of mutating join
 - left_join(), inner_join(), right_join(), full_join()

Joins


• Let's define two simple tibbles x and y.

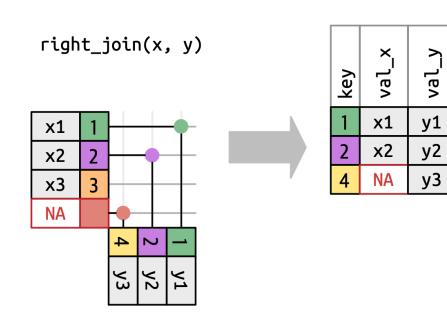

```
x <- tribble(</pre>
  ~key, ~val_x,
     1, "×1",
     2, "x2",
     3, "x3"
y <- tribble(</pre>
  ~key, ~val_y,
     1, "y1",
     2, "y2",
     4, "y3"
```


- To understand how joins work, it's useful to think of every possible match.
- Here we show that with a grid of connecting lines



ху

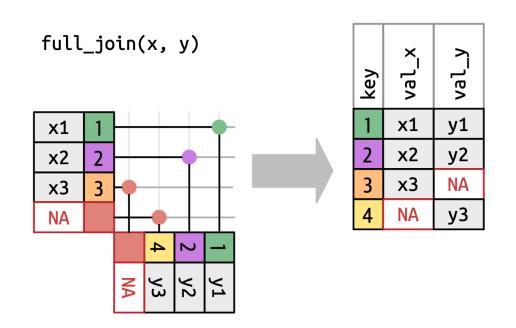
```
# A tibble: 2 × 3
    key val_x val_y
    <dbl> <chr> <chr> 1 1 x1 y1
2 2 x2 y2
```

xy_left <- left_join(x = x, y = y, by = "key")</pre>

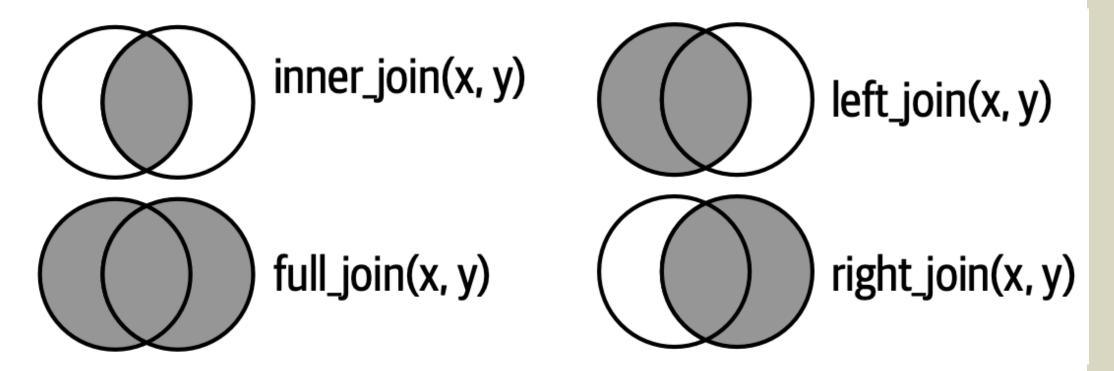
xy_left

A tibble: 3 × 3
 key val_x val_y
 <dbl> <chr> chr> <chr>
1 1 x1 y1
2 2 x2 y2
3 3 x3 <NA>



xy_right

A tibble: 3 × 3
 key val_x val_y
 <dbl> <chr> chr> <chr>
1 1 x1 y1
2 2 x2 y2
3 4 <NA> y3

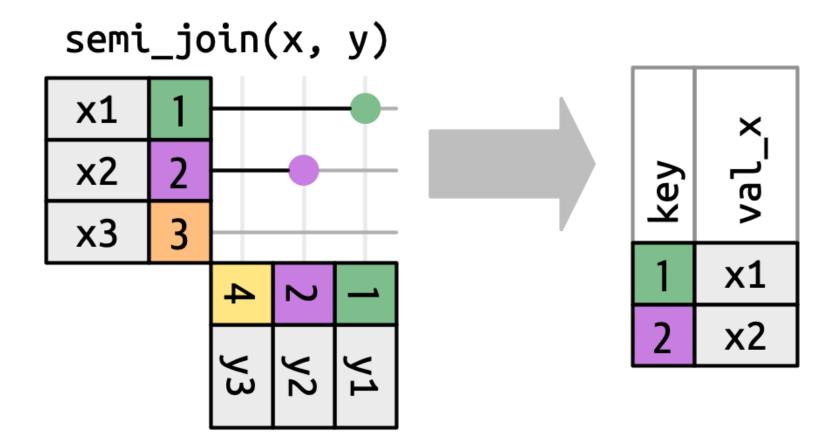

 $xy_full <- full_join(x = x, y = y, by = "key")$

xy_full

A tibble: 4 × 3
 key val_x val_y
 <dbl> <chr> <chr> 1 1 x1 y1
2 2 x2 y2
3 3 x3 <NA>
4 4 <NA> y3

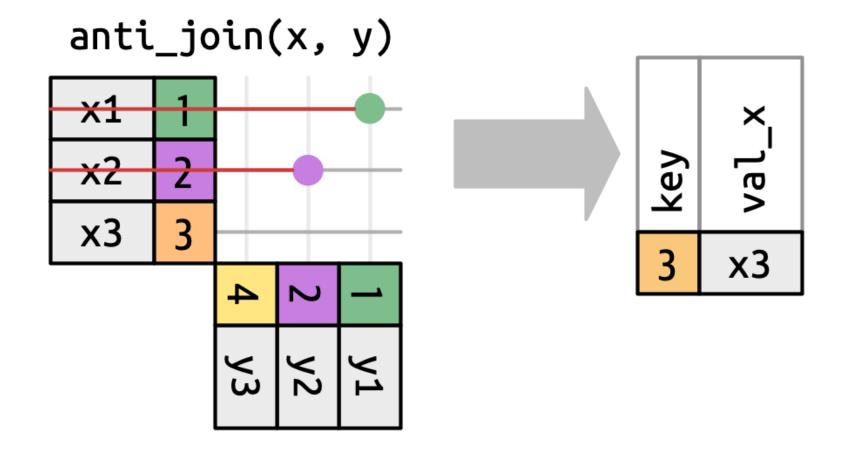
The following Venn diagrams showing the difference between inner, left, right, and full joins.

Filtering joins



Filtering joins

- Mutating joins add columns from y to x, matching rows based on the key.
- Filtering joins filter rows from \boldsymbol{x} based on the presence or absence of matches in $\boldsymbol{y}.$
- Two types of filtering join:
 - semi_join(), and anti_join()



• semi_join() return all rows from x with a match in y

• anti_join() keeps rows in x that match zero rows in y

Exam data

Year 1

# A tibble: 7 × 4					
	id	gender	ast101	ast102	
	<int></int>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	
1	101	F	57	49	
2	102	М	51	51	
3	103	F	72	26	
4	104	F	58	58	
5	105	М	65	32	
6	106	М	57	62	
7	107	F	65	66	

Year 2

#	A tib	ole: 7 >	< 3
	id	ast201	ast202
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	101	77	43
2	102	72	34
3	103	65	41
4	104	76	39
5	105	75	37
6	106	70	35
7	201	76	65

- Calculate CGPA, i.e., overall performance of each student
- Compare the performance of male and female on the basis of CGPA

